Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 158(1): 334-43, 2009 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-18378405

RESUMO

It has been suggested that NR2B-containing N-methyl-d-aspartate (NMDA) receptors have a selective tendency to promote pro-death signaling and synaptic depression, compared with the survival promoting, synapse potentiating properties of NR2A-containing NMDA receptors. A preferential localization of NR2A-containing NMDA receptors at the synapse in maturing neurons could thus explain differences in synaptic vs. extrasynaptic NMDA receptor signaling. We have investigated whether NMDA receptors can mediate signaling to survival, death, and synaptic potentiation, in dissociated rat neuronal cultures at a developmental stage prior to significant NR2A expression and subunit-specific differences between synaptic and extrasynaptic NMDA receptors. We show that in developing hippocampal neurons, the progressive reduction in sensitivity of NMDA receptor currents to the NR2B antagonist ifenprodil applies to both synaptic and extrasynaptic locations. However, the reduction is less acute in extrasynaptic currents, indicating that NR2A does partition preferentially, but not exclusively, into synaptic locations at DIV>12. We then studied NMDA receptor signaling at DIV10, when both synaptic and extrasynaptic NMDA receptors are both overwhelmingly and equally NR2B-dominated. To analyze pro-survival signaling we studied the influence of synaptic NMDA receptor activity on staurosporine-induced apoptosis. Blockade of spontaneous NMDAR activity with MK-801, or ifenprodil exacerbated the apoptotic insult. Furthermore, MK-801 and ifenprodil both antagonized neuroprotection promoted by enhancing synaptic activity. Pro-death signaling induced by a toxic dose of NMDA is also blocked by NR2B-specific antagonists. Using a cell culture model of synaptic NMDA receptor-dependent synaptic potentiation, we find that this is mediated exclusively by NR2B-containing N-methyl-D-aspartate receptors, as implicated by NR2B-specific antagonists and the use of selective vs. non-selective doses of the NR2A-preferring antagonist NVP-AAM077. Therefore, within a single neuron, NR2B-NMDA receptors are able to mediate both survival and death signaling, as well as model of NMDA receptor-dependent synaptic potentiation. In this instance, subunit differences cannot account for the dichotomous nature of NMDA receptor signaling.


Assuntos
Ácido Glutâmico/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Agonistas de Aminoácidos Excitatórios/toxicidade , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
2.
Osteoarthritis Cartilage ; 16(12): 1576-84, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18554934

RESUMO

OBJECTIVE: Classical neuronal signalling molecules such as substance P and glutamate have been identified in cartilage and have roles in regulation of chondrocyte function. This study looks at expression and activity of the ionotropic glutamate NMDA (N-methyl-D-aspartic acid) receptor (NMDAR) in human osteoarthritic (OA) chondrocytes. METHOD: Chondrocytes were obtained from human knee joint arthroplasty specimens. NMDAR subunits and PSD-95 (postsynaptic density protein 95) expression were analysed by reverse transcription-polymerase chain reaction and Western blotting. Activity of NMDAR was assayed by radioactive calcium(45) uptake and changes in membrane potential in the presence and absence of NMDA and NMDAR antagonists and blockade of cell membrane ion channels. RESULTS: NMDAR 1, 2A, 2B and PSD-95 were detected in human OA chondrocytes whereas NR2B was absent from normal chondrocytes. NMDA induced calcium flux into OA chondrocytes and cell membrane depolarisation. These responses were blocked by NMDAR antagonists, removal of extracellular calcium, inhibition of nNOS (neuronal nitric oxide synthase) activity and uncoupling of NMDAR from PSD-95. Blockade of sodium channels by tetrodotoxin resulted in NMDA-induced membrane hyperpolarisation which was, in turn inhibited by apamin, a blocker of SK channels. NMDA-induced changes in cell membrane potential were not affected by l-type and stretch activated calcium channel inhibitors. CONCLUSIONS: Human OA and normal articular chondrocytes differ in the expression of NMDAR subunits. In OA chondrocytes NMDAR signalling requires extracellular calcium, association with PSD-95, and nNOS activity. Downstream signalling results in activation of tetrodotoxin sensitive sodium channels and SK channels, a response that differs from that of normal chondrocytes suggesting altered activity of NMDAR in OA.


Assuntos
Canais de Cálcio/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Osteoartrite do Joelho/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Líquido Sinovial/metabolismo , Cartilagem Articular/citologia , Células Cultivadas , Condrócitos/citologia , Regulação da Expressão Gênica , Humanos , Osteoartrite do Joelho/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Líquido Sinovial/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...